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Correlations of Permeability and
Geological Characteristics Based
on Mercury Intrusion Data and
Hierarchical Statistical Models:
A Case Study
The mercury intrusion technique is a crucial in-lab method to investigate the porous
medium properties. The potentiality of mercury intrusion data has not been explored signif-
icantly in the traditional interpretation. Thus, a hierarchical statistical model that not only
captures the quantitative relationship between petrophysical properties but also accounts
for different geological members is developed to interpret mercury intrusion data. This mul-
tilevel model is established from almost 800 samples with specific geological characteris-
tics. We distinguish the fixed effects and the random effects in this mixed model. The
overall connection between the selected petrophysical parameters is described by the
fixed effects at a higher level, while variations due to different geological members are
accommodated as the random effects at a lower level. The selected petrophysical parame-
ters are observed through hypothesis testing and model selection. In this case study, five
petrophysical parameters are selected into the model. Essential visualizations are also pro-
vided to assist the interpretations of the probabilistically model. The final model reveals the
quantitative relationship between permeability and other petrophysical properties in each
member and the order of relative importance for each property. With this studied relation-
ship and advanced model, the geological reservoir simulation can be greatly detailed and
accurate in the future. [DOI: 10.1115/1.4047327]
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1 Introduction
Fossil fuels will remain an important energy source for the next

several decades [1]. As an essential petrophysical property, perme-
ability represents the capacity of the reservoir to determine hydro-
carbon recovery. It is essential for the petroleum investigators to
have an accurate insight into reservoir permeability. The percentage
of petroleum products from the conventional reservoir in China was
about 80% in 2017 [2]. Therefore, more efforts need to be extended
to investigate the controlling factors for the permeability of the con-
ventional reservoir. Meanwhile, much of the effort focuses on cor-
relating permeability with a broad range of sandstone petrophysical
properties. The relationship between permeability and these petro-
physical properties have various forms, including simple statistical
correlations and property converted correlations [3]. However, there
is no universal mathematical relationship between permeability and
these petrophysical properties so far. Besides, the features of differ-
ent geological members noticeably have a substantial impact on the
quantitative relationship among the petrophysical parameters. A
quantitative relationship allowing for multiple petrophysical proper-
ties is necessary to provide guidance on oil extraction. The oilfield,
especially mature oilfield, will be benefitted a lot in product predic-
tion, drilling design, and enhanced recovery from monitoring petro-
physical properties and their variation. To practically apply these
permeability predictions, detailed data on every single core

sample is usually required, primarily through the in-lab techniques
such as mercury intrusion experiment.
The mercury intrusion experiment is one of the most critical

methods to investigate the pore structure of core samples by mea-
suring petrophysical properties. Petrophysical properties have a
great impact on reservoir characteristics and oilfield production.
Except for permeability, these petrophysical properties include
porosity, sorting coefficient, mean pore radius, and displacement
pressure, to name a few. Meanwhile, all (or most) petrophysical
properties usually interact with each other because they are domi-
nated by the same or similar physical laws [1]. During the develop-
ment, amounts of mercury intrusion data have accumulated based
on the varieties of geological members. These data offer the possi-
bility to be analyzed by a statistical model. In this paper, we study
the permeability prediction in different geological members by
mercury intrusion data using a hierarchical statistical model. With
a better understanding of such a relationship, the reservoir simula-
tion will yield a more accurate performance prediction.

1.1 Statistical Model. When data have different sources of
variations, the traditional models will lose their power. The posses-
sion of hierarchy in the data causes correlations among observations
and thus violates the independence assumption for conventional
models. In our case, the variation comes from two sources: individ-
ual core samples and the geological members where the core
samples are drilled from. It is reasonable to believe that core
samples from the same member will share some characteristics in
common, while dissimilar with the samples from other members.
That is, the core samples are not independent to each other.
Rather, they are correlated at a higher level (the member level).
As a result, a linear mixed model [4] will be considered, as this is
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the conventional model to analyze continuous data with hierarchical
correlations. A mixed model is a combination of fixed effects and
random effects. The concept of random effects was first introduced
by Fisher [5], and the estimation techniques for fixed and random
effects were invented by the previous works [6]. With a mixed
model, the variations at the geological member level can be accom-
modated by the random effects, allowing us to differentiate them
from the individual core sample variations.
Hypothesis testing is one of the statistical inference techniques.

We usually propose a “null hypothesis” and an “alternative” a
priori. In regression models, if not specified, the null hypothesis
is generally that the coefficient of the variable is equal to zero.
We then arrive at a conclusion based on the observed data that
either “reject” or “fail to reject” the null hypothesis [7]. A typical
way is to derive a probability of observing the observation or
more extreme values, which is called a p-value. If the p-value is
smaller than 0.05, we will “reject” the null hypothesis. The statisti-
cal analyses are performed using R [8], which is one of the most
commonly used statistical software for statisticians. This free soft-
ware allows users to write their own codes, which provides more
flexibility. In this paper, the linear mixed model is developed
with the lme function in the nlme package, while the hypothesis
testing uses the linearHypothesis function from the car package.
Besides, the exploratory plots are generated with the ggplot2
package, and the sensitivity analysis is performed with the r2beta
function from the r2glmm package.

1.2 Permeability Prediction and Statistical Model. The
combinations of permeability prediction and the statistical model
are investigated as a promising research area. A variety of algo-
rithms have been applied to permeability prediction from different
research fields. Because of the enormous complexity in the oil
and gas reservoir or coal seams, the high-qualified permeability
model is a formidable task [9]. The predictive model consists of
various mechanisms from fundamental understanding. Integrated
with these conditions, the computer code can be developed for pre-
dictive models with certain initial and boundary conditions. Plenty
of proposed permeability models attempts to account for the mech-
anisms within different background environments. Ramm and
Bjørlykke [10] also considered the relationship between reservoir
geological settings and petrophysical properties. They found that
pre-burial mineralogy was a significant point in porosity prediction
of sandstones. But most of the previous works take attention on the
formation scale or in-lab scale, instead of geological member scale.
The impact of specific characteristics of the members has not been
focused on in the research.
Except for absolute permeability, relative permeability prediction

is also super critical. The oil recovery is associated with relative per-
meability, especially in the water-flooding reservoir, because rela-
tive permeability is often represented as a function of water
saturation. For the 2D/3D permeability experiments and tight

formations, the traditional methods find their limitations in deter-
mining the absolute permeability and relative permeability. In this
case, the history matching method shall be used [11–14]. The
values from the model entirely agreed with three-phase relative per-
meability, which were used to evaluate the model. Blunt et al. [15]
used a three-dimensional network model to compute relative perme-
ability in porous media. The experimental data and proposed model
predictions had a significant agreement.

1.3 Permeability Prediction With Mercury Intrusion
Data. Mercury intrusion is a powerful technique for the evaluation
of petrophysical properties to characterize a wide variety of porous
media. Overall, the mercury intrusion experiment can provide
detailed data on every single sample, which is required in the per-
meability prediction algorithm. That is why permeability prediction
with mercury intrusion data is a unique interdisciplinary approach.
Lapierre et al. [16] showed that there is a relationship between the
pore-size parameters and the permeability of the clay. Al Hinai et al.
[17] correlated permeability with capillary pressure from mercury
intrusion measurement. They derived the equation between perme-
ability, porosity, and pore-throat size at 75% mercury saturation.
The investigation of permeability prediction with mercury intru-

sion data is not limited in the aforementioned works in this section.
More formulas have been derived from various algorithms. More-
over, the application of mercury intrusion experiment has expanded
from traditional sandstone to unconventional rocks. Clarkson et al.
[18] investigated nanopore structure in the tight reservoir with
mercury intrusion techniques and low-pressure adsorption. Noorud-
din et al. [19] presented a comparative study among the main soft
computing algorithms. In addition, this technique is also applied in
the investigation of the pore-throat structure with permeability in
tight formations because the pore-throat structure dominates the per-
meability in tight formations [20–22]. Although the previous works
about mercury intrusion experiment is numerous, the potentiality of
mercury intrusion data has not been explored significantly in the tra-
ditional interpretation. Plenty of petrophysical information still has
not been revealed under the mercury intrusion data.

1.4 Workflow. This section provides an overview of the work-
flow of the permeability and hierarchical statistical models with
geological members based on mercury intrusion data. A statistical
model/geological background-integrated approach (Fig. 1) is devel-
oped to investigate the quantitative relationship between permeabil-
ity and other petrophysical properties, subjecting to specific
geological member characteristics. First comes the exploratory
analysis. Relationships between permeability and other petrophysi-
cal properties are visualized by a series of collected geological
members. Visualization helps us identify the most appropriate
model, as well as potential issues, such as outliers. The second
stage is model fitting, we selected the linear mixed model and the
general linear model, contributing to the quantitative relationship

Fig. 1 A statistical model/geological background-integrated workflow
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between the petrophysical properties, and the testing on differences
among significant geological members, respectively. Third, model
diagnosis is performed to check the validity of the models. The
final stage is interpretation. A final most appropriate model is
achieved to explain the relationship based on different geological
behaviors. This model can be used for prediction of different geo-
logical settings.
We collected the mercury intrusion data of 797 core samples

from a total of 11 members. The primary oil-producing members
are member nj, qn1, q4, and qt, which belong to the same formation
with the increasing depth from member nj to member qt. Mean-
while, the geological characteristics of the members that we selected
are lithology, grain composition, interstitial, sedimentary microfa-
cies, and diagenesis. For the hierarchical statistical model, the
dependent variable is permeability (mD), and the potential indepen-
dent predictors are five petrophysical parameters, which are poros-
ity (%), sorting coefficient (dimensionless), mean pore radius (μm),
homogeneous coefficient (dimensionless), and displacement pres-
sure (MPa). Among the predictors, the sorting coefficient accounts
for the distribution of the pore size. The higher sorting coefficient
means the more uniform grain size. Also, the homogeneous coeffi-
cient describes the deviation between the pore radius and the
maximum pore radius. The displacement pressure is the pressure at
which the non-wettability fluid begins to enter into the maximum
pore of the core sample. Through comparing geological characteris-
tics with the coefficients of petrophysical properties in the statistical
model, we can investigate the contribution quantitatively from geo-
logical characteristics to the values of petrophysical properties.

2 Geological Setting
Although we have the samples from 11 members, the main oil-

producing members are only four of them: member nj, qn1, q4,
and qt. We also have more samples from these four members
than the others. Therefore, we will investigate the comparison of
these four members specific geological settings in detail. The rock
with different lithologies usually has different properties.
However, the same lithology rock does not always have similar fea-
tures, because the grain composition, sorting, and interstitial all
have impacts on the reservoir properties. Except for the factors
above, diagenesis also plays an essential role in the reservoir prop-
erties. Therefore, the geological characteristics of the members that
we selected are lithology, grain composition, interstitial, sedimen-
tary microfacies, and diagenesis phase.
Member nj, the sedimentary system is lacustrine-delta facies. The

lacustrine facies include shore-shallow and semi-deep subfacies,
which deposit the microfacies of shore-shallow lacustrine mud,
shallow lacustrine mud, and beach-bar. The delta facies mainly
includes delta front and prodelta subfacies, which deposited the
microfacies of underwater distributary channel, estuarine bar,
distal bar, front sheet sand, interdistributary bay, and prodelta
mud. The reservoir lithology is siltstone and fine sandstone with
the components of lithical arkose and feldspathic arenite. The
sorting is medium-well. The psephicity is subangular-subrounded.
The matrix-type is pelitic and quartz-feldspathic. The cementation
type is mainly porous and contact-porous cementation with a little
basal cementation. The adglutinate is calcite, kaolinite, and silica.
The rock textural maturity is medium, and the mineral’s maturity
is medium-low.
Member qn1, the sedimentary system is delta facies. The delta

facies mainly includes delta front and prodelta subfacies, which
deposited the microfacies of underwater distributary channel, estu-
arine bar, underwater distributary channel overbank, front sheet
sand, distal bar, and underwater interdistributary bay. The lacustrine
facies also deposited a little, so the subfacies are semi-deep and
deep lacustrine. The microfacies is turbidity sand. The reservoir
lithology is siltstone and fine sandstone with the components of
lithical arkose. The sorting is medium-good, and the psephicity is
subangular-subrounded. The matrix-type is pelitic and calcareous.

The cementation type is mainly porous and contact-porous cemen-
tation with a little basal cementation. The adglutinate is calcite, kao-
linite, and silica. The rock textural maturity is medium, and the
mineral maturity is medium-low.
Member q4, the central and lower member part is river-

dominated nearshore shallow delta plain subfacies with the micro-
facies of distributary channel, point bar, crevasse splay, abandoned
channel, natural levee, and interdistributary bay. The upper part is
delta front subfacies. In the direction of lacustrine deposits, the
microfacies is underwater distributary channel in the proximal
delta front deposition, estuarine bar in the far deposition, and
sheet sand and distal bar in the end area deposition. The reservoir
lithology is siltstone and fine sandstone with the components of
feldspathic arenite and little lithical arkose. The sorting is
medium, and the psephicity is subangular. The matrix-type is
pelitic and calcareous with thin film shape and recrystallization.
The cementation type is mainly porous and contact-porous cemen-
tation with a little basal cementation. The adglutinate is calcite, kao-
linite, and silica. The rock textural maturity is medium, and the
mineral maturity is medium-low.
Member qt, the sedimentary system is far-shore delta distributary

plain subfacies with the microfacies of distributary channel, point
bar, crevasse splay, abandoned channel, natural levee, and interdis-
tributary bay. The reservoir lithology is siltstone and fine sandstone
with little coarse and medium sandstone. The rock components are
feldspathic arenite and little lithical arkose. The sorting is medium,
and the psephicity is subangular. The matrix-type is pelitic and
quartz-feldspathic. The cementation type is mainly contacted
cementation with a little basal cementation and porous cementation.
The adglutinate is calcite, kaolinite, and silica. The rock textural
maturity is medium, and the mineral maturity is medium-low.

3 Methodology
3.1 Exploratory Analysis. To find a proper model that can

describe how permeability can be affected by porosity, sorting coef-
ficient, mean pore radius, homogeneous coefficient, and displace-
ment pressure, we start from exploratory analysis to examine the
data by various geological members. If any member has a number
of observations smaller than 5, we will combine it with other
members if possible, or delete it, since too few observations
cannot illustrate the relationship accurately. Extreme outliers with
relatively high permeability are removed since such high permeabil-
ity is not feasible. There are 11 members in total after data manip-
ulation. Relationships between permeability and the other
properties are plotted by the 11 members using scatterplot matrices.
If all the members possess linear trends, a linear mixed model will
be applied. Otherwise, necessary transformations on the variables
will be used.

3.2 Linear MixedModels. The linear mixed model is analogy
to a linear regression model. If we fit a linear regression model, we
can write the model as Eq. (1):

ki = β0 + β1 ϕi + β2 ai + β3 bi + β4 ci + β5 di + ϵi

(i = 1, 2, . . . , n) (1)

where k represents permeability, ϕ is porosity, a is sorting coeffi-
cient, b is mean pore radius, c is homogeneous coefficient, d is dis-
placement pressure, β0 – β5 are fitting coefficients, ϵi∼ N(0, σ2)
represents the error from observation i, which follows a normal dis-
tribution with mean zero and shares a constant variance with other
observations, and n is the total number of observations. The vari-
ables in the model may not be the raw data, but with transformations
(hereafter). The linear regression model can express the general
relationship among the variables, but it cannot capture the differ-
ences across members. Although the relationships are all linear
across the 11 members, the intercepts and slopes may be different.
Thus, we would like to use the linear mixed model to describe the
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general relationship among variables, as well as capture individual
differences across members. If we only consider the differences in
the intercept, then we can build an intercept-only linear mixed
model (random intercept model) as Eq. (2):

ki,j = β0 + β0,j + β1 ϕi,j + β2 ai,j + β3 bi,j + β4 ci,j + β5 di,j + ϵi,j

(i = 1, 2, . . . , n, j = 1, 2, . . . , K)

(2)

Here, j represents the member where the specific observation comes
from, and K= 11 is the total number of members. The difference
compared with the linear regression model exists in β0. Instead of
one common value β0, in a linear mixed model with random inter-
cept, it becomes β0+ β0,j. Here, β0 represents a mean value for all
members, while β0,j represents the difference from member j
to the mean value. In such a way, the general relationship among
the variables can be represented using the mean value β0,
while the specific relationship for member j can be described by
β0+ β0,j. Note the two parts of the intercept can also be combined
into a single β̃0,j = β0 + β0,j notation wise.
To further increase the flexibility, we can consider a random

slope model. Not only the differences in the intercept can be cap-
tured, the differences in the slopes (coefficients for the independent
variables) are able to be detected as well. Similarly, we can write the
model as Eq. (3), note the slopes can also be written as a single
β̃ p,j, p = 1, 2, . . . , 5:

ki,j = β0 + β0, j + (β1 + β1,j) ϕi,j + (β2 + β2,j) ai,j

+ (β3 + β3,j) bi,j + (β4 + β4,j) ci,j + (β5 + β5,j) di,j + ϵi,j

(i = 1, 2, . . . , n, j = 1, 2, . . . , K) (3)

An important characteristic of the linear mixed model is that
although accounting for the differences across members, the differ-
ence is not of particular interest. The model treats the differences of
the intercepts and slopes, βp,j, p= 0, 1, 2, · · · , 5, as random. Instead
of a constant number as βp, we consider β p,j ∼ N(0, σ2p) for differ-
ent member j. That is, we can attain estimations for βp,j, p= 0, 1, 2, ·
· · , 5, but we cannot conduct hypothesis testing on them to provide
evidence that the differences between specific members are not by
chance. Thus, they are called random effects. However, we can
perform hypothesis testing on the mean estimates of the parameters,
βp, to show the statistical significance of variable p in affecting per-
meability. The βp’s are called fixed effects. Although no testing can
be performed on a particular βp,j, they are able to accommodate the
variations due to different members.
Model selection is based on criteria Akaike information criterion

(AIC), Bayesian information criterion (BIC), log-likelihood, and
likelihood ratio test (only available for nested models). Since we
have assumptions that the errors and random terms have normal dis-
tributions, each model can obtain a likelihood. The number repre-
sents how likely the response variable takes the observed value,
and thus the higher, the better. However, if we have more predictors
in the model, the likelihood will tend to increase, so the model may
be overfitted. Thus, AIC or BIC will be considered. They are calcu-
lated based on likelihood but with different penalties on the number
of predictors in the model. The smaller the value of AIC or BIC, the
better the model is. The likelihood ratio test provides a solid test to
show whether two models are essentially the same. If two nested
models are different only by chance, we can always choose the
simpler model.
After the final model is determined, diagnoses will be performed

on that final model to check for the validities of assumptions. We
will want residuals from each member to have zero mean,
random pattern, constant variances, and normal distributions.
Besides, we will also want to check the multicollinearity among
the predictors in the model. Multicollinearity means there is a
linear relationship among the predictors. If this issue exists, the esti-
mations of the parameters will not be reliable. Furthermore,

sensitivity analysis is conducted to show the relative importance
of each independent variable by semi-partial R2. Partial R2 in the
linear regression model represents the percentage of variability
explained by a particular variable from the total variation account-
ing for all the other variables. The semi-partial R2 is an analogy used
in linear mixed models. Variables with a higher semi-partial R2

have more impact on explaining the variability of permeability.

3.3 General Linear Models. If all the assumptions are valid,
we will confirm the final model to explain the general relationships
among the variables. With the geological setting consideration, our
next step is to conduct hypothesis testing to illustrate that the main
members are different. To investigate this, we fit a general linear
model, which treats members as a predictor in the model, which
can be written as Eq. (4):

k = β0 + β1 ϕi + β2 ai + β3 bi + β4 ci + β5 di + β6Mi

+ β1,6ϕi ∗Mi + β2,6ai ∗Mi + β3,6ci ∗Mi + β4,6ci ∗Mi

+ β5,6di ∗Mi + ϵi (i = 1, 2, . . . , n) (4)

whereM is geological member. This model looks like linear regres-
sion. However, sinceM is a categorical variable, it becomes differ-
ent. Statistical significance of variable M means differences among
members in the intercept level is not due to chance. Significance in
the interactions means that the differences lie in the slope of the cor-
responding variable. We cannot replace this general linear model to
the previous mixed model because the newly added termM and the
corresponding interactions will affect the estimations and testing
results of the other coefficients. Besides, this model does not
reflect the general relationship among properties. Members nj,
qn1, q4, and qt are the main oil-producing members. As a result,
we would like to focus on comparisons among these members.
We conduct hypothesis testing between each pair of them.

4 Results and Interpretation
4.1 Exploratory Analysis. Figure 2 includes the scatterplot

matrix for permeability against porosity by the member. It is observ-
able that the relationships between porosity and permeability are
nonlinear. Other distributions are also considered for the
goodness-of-fit. However, common distributions, such as log-
normal or gamma, do not work well. As a result, we consider trans-
formations on the variable. Natural log transformation is regarded
as it is a common choice. After transformation (shown in Fig. 3),
the relationships become linear, and the distribution of Log(perme-
ability) also becomes normal.
Due to the page limit, we can only display one scatterplot matrix

in the paper. The other variables follow similar patterns. Thus, we
determine to use Log(permeability) as the response variable to fit
the model. Since the units of independent variables do not align,
we standardize each predictor, so they are on the same scale.
Note that standardization will not change whether the coefficient
of a particular predictor is significant or not. It only turns in the esti-
mated values. Yet, it can be helpful in comparisons among predic-
tors. No predictor will dominate the others, and the magnitudes of
the estimated coefficients can also reflect the relative importance
in predicting permeability. Also, since standardization centers the
predictor values, the estimated intercept will have a significant
change.

4.2 Linear Mixed Model. We start from the random intercept
model with all five predictors. We determined from the results of the
exploratory analyses that some predictors do not possess perfect
linear relationships. Thus, we consider log transformations on
these predictors and compare them with the original forms. If a
model contains insignificant variables, we would also perform
backward selection manually by removing the predictor with the
highest p-value until all predictors are significant. Then, a
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likelihood ratio test is conducted on all nested models. We select the
best model among various transformations and combinations of pre-
dictors, considering AIC, BIC, log-likelihood, and likelihood ratio
test together. Finally, we choose the model with all five predictors
included, taking the log transformation only on Predictor Displace-
ment_Pressure. We then consider the random slope model and
follow the same procedure. The selected model contains the same
combination and transformation of predictors as the random inter-
cept model.
The next step is to compare the random intercept and the random

slope model. Since the two best models contain precisely the same
set of predictors, they are nested. A likelihood ratio test is thus valid,
with a p-value <0.0001, so we cannot reduce to the simpler model,
which is the random intercept model. To be more cautious about the
results, we also compare across other candidates from both random
intercept and random slope models, although they are not selected
within each category. Based on various criteria, our final model
to explain the general relationship among variables is the full
model with random slopes and log transformation on Displace-
ment_Pressure. The corresponding estimates, standard errors,
degrees-of-freedom, test statistics, and p-values for the coefficients
from fixed effects are listed in Table 1. All five predictors from pet-
rophysical properties are statistically significant.
Based on Eq. (3) and Table 1, we obtain Eq. (5):

Log(k) = −0.0433 + 0.7700 ϕi,j + 0.1225 ai,j + 0.9763 bi,j

−0.1391 ci,j − 0.7041 Log(di,j) + ϵi,j

(i = 1, 2, . . . , n, j = 1, 2, . . . , K) (5)

We can have specific quantitative relationships in every member,
as listed in Table 2. With random effects, the final weights from

every predictor are significantly different in each member. In the
fixed effect equation and all the random effect equations, the poros-
ity, sorting coefficient, and mean pore radius usually have a positive
impact on permeability. In contrast, homogeneous coefficient and
Log(displacement pressure) typically hurt permeability.
We continue to check the validity of model assumptions. Figure 4

illustrates that our assumptions are generally satisfied except for a
few outliers, by checking the residuals universally and by the
member. Residuals are located around zero with no particular
pattern. Although the variations are not precisely the same, they
spread out in the same area randomly. The only problems are the out-
liers, most of which appear in member q4. This phenomenon makes
sense since q4 contains more data points and thus would be more
heterogeneous. The outliers are due to very large or small values
of permeability and still fall in reasonable ranges. Thus, we decide
to keep them in the model after careful consideration. Except for
the outliers, the mean zero and constant variance assumptions are
valid. Even with the outliers, the deviations are not significant,
and no particular pattern indicates us to change the model.
As Fig. 5 illustrates, to further investigate the performance of our

model, we compare the fitted values to the truth. Here, fitted values
mean the estimated or calculated permeability values using our
model with estimated coefficients and observed values for the pre-
dictors. Although the observed permeability values have been used
to determine the coefficients, it is still reasonable to compare the
fitted ones with the truth, since all observations are used in the esti-
mation while one single value is compared. The observed versus
fitted values plot is still a popular way for goodness-of-fit check.
As compared with the observed permeability values (taking log-
transformation), we can see that our estimations fit well with the
truth, which means our model is reasonable. Besides, the variance
inflation factor (VIF) is considered to check for multicollinearity.

Fig. 2 Permeability versus porosity by all 11 members
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A value close to 1 is preferable for VIF, while a value greater than
10 is problematic. Our highest VIFs are around 5, indicating that
there are some collinearities among the predictors, but they will
not affect our results. A relatively high correlation among predictors
also makes sense due to the physical laws of quantifying these pet-
rophysical properties.

Based on our model and estimates, sensitivity analysis can be
performed to identify the relative importance of each predictor
affecting permeability. In terms of the mean of permeability, the
dominating factors can be addressed through the absolute
magnitude of the estimated coefficients, since our predictors are
standardized. From Table 1, Mean_Pore_Radius, Porosity and
Log(Displacement_Pressure) have relatively high magnitudes
(>0.7) compared with the others (≈0.1). Thus, they are the dominat-
ing factors. In terms of the variance of permeability, we consider the
semi-partial R2, which compares the marginal interpretability of
the permeability variations by each predictor, holding the others
in the model. Figure 6 illustrates the semi-partial R2 for the whole
model and each predictor. The whole model has an R2 above 0.8,
indicating more than 80% of permeability variations are explained
by the model. The values for individual predictors are not very
large due to the correlations among predictors. Similar to the mean,
Mean_Pore_ Radius, Porosity, and Log(Displacement_Pressure)
also have higher relative importance (>0.1) than the other two predic-
tors (<0.1).

4.3 General Linear Model. Hypothesis testing is performed
for each pair of the primary oil-producing members. Corresponding

Fig. 3 Log(permeability) versus porosity by all the members

Table 1 Estimates, standard errors, degrees-of-freedom (DF),
test statistics (t-value), and p-values for fixed effect coefficients
for linear mixed model

Estimate Std. error DF t-value p-value

Intercept −0.0432758 0.14833405 781 −0.291746 0.7706
Porosity 0.7699809 0.07742211 781 9.945232 0.0000
Sorting
coefficient

0.1225279 0.05514295 781 2.222005 0.0266

Mean radius 0.9763455 0.14121891 781 6.913703 0.0000
Homogeneous
coefficient

−0.1390756 0.07052698 781 −1.971948 0.0490

Log
(displacement
pressure)

−0.7041038 0.16782522 781 −4.195459 0.0000

Table 2 Estimates of the coefficients of all predictors for four main members

Intercept Porosity Sorting coefficient Mean radius Homogeneous coefficient Log(displacement pressure)

nj −0.0831 0.5835 0.1004 1.3342 −0.0785 −0.4573
q4 −1.0747 0.7724 −0.0653 0.3127 0.2374 −1.8347
qn1 −0.4569 0.8052 0.0281 0.8757 −0.0451 −1.0612
qt 0.3725 0.9569 0.2270 0.7231 −0.3096 −0.6223
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p-values for intercept and slopes are listed in Table 3. Bold numbers
are p-values smaller than 0.05, indicating significance. The signifi-
cant comparison means the two compared members are different in
this specific predictor. From Table 3, the pairs of main members are
almost significant in at least one predictor. Among the total six com-
parisons, the predictor Log(Displacement_Pressure) is substantial
in four comparisons. Between the other two, one comparison,
namely, nj versus qt, shows significance in Porosity and Mean_Ra-
dius. Results indicate that the overall pore structure of each member
is different from the other members.
Considering the geological settings of the main oil-producing

members, the relationship between specific geological characteris-
tics and significant predictors can be identified. The predictor Poros-
ity is primarily dominated by lithology, which controls the grain

Fig. 4 Standardized residuals versus fitted values in each member

Fig. 5 Observed Log(permeability) versus fitted by each member

Fig. 6 Semi-partial R2 for the model and each predictor
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gradation in the member. The predictor Sorting_Coefficient is
mostly related to the interstitial and diagenesis phase, which con-
firms that the interstitial has a significant impact on the permeability
and other reservoir properties. The predictor Mean_Pore_Radius is
mainly decided by grain composition and grain gradation, which
implies that the lithology is the primary role in the mean pore
radius. The predictor Homogeneous_Coefficient is governed by
microfacies and the diagenesis phase. The final predictor Log(Dis-
placement_Pressure) is influenced mostly by the cementation type
and diagenesis phase. The result reveals that the diagenesis phase
has a dominant role in three predictors. The identification of the
diagenesis phase should be emphasized during the geological inves-
tigation and model fitting. Table 3 confirms the complicated deriva-
tion degree of the pore structure between different members, even in
the same formation, which should be noticed in advanced geologi-
cal reservoir simulation.
We notice that the group of qn1 versus qt is only significant in the

intercept, which means they are of the statistical similarity in the
predictors. We believe it is the post-diagenesis that causes this situa-
tion. The heterogeneity characteristics of post-diagenesis brought
the isolated and discontinuous planar distribution of different
members, such as member qn1 and member qt. Although we
have the samples with the same depth and assume they are qualified,
due to the different inspection wells location and various post-
diagenesis in member qn1 and qt, the specific geological setting
for each sample may be divergent to our assumption. Besides, the
amounts of the samples should be increased to improve the model
reliability. In the future, we will collect more samples to modify
and check our model.

5 Conclusions
In this study, we proposed a hierarchical statistical model that

both quantifies the relationship between permeability and other pet-
rophysical properties and incorporates various geological character-
istics using mercury intrusion data. To the best of our knowledge,
no existing method builds this relationship with mercury intrusion
data. By using the mixed model, we not only account for individual
sample variations but also accommodate variations due to geologi-
cal members. In addition, we identified that mean pore radius,
porosity, and displacement pressure are relatively more important
in explaining both the mean and variance of permeability, than
sorting and homogeneous coefficients in this case study. Displace-
ment pressure is also the most important variable to distinguish geo-
logical members. Geological settings behind each member are
analyzed to explain the rationale of the comparison results and
are also matched to petrophysical properties. This helps to fill the
gap of the linear mixed model in predicting a new observation
coming from a nonexisting member. The new observation can be
assigned to a member with similar geological settings to its own.
Though the model can always be improved with more samples,
especially coming from new geological members, and more
advanced techniques, our mixed model has the potential to
provide guidance on mercury intrusion, as well as benefit the
advanced geological simulation, model verification, and portable
core sample 3D printing.
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