
1. Introduction
When a layer of viscous fluid is confined between two horizontal boundaries and heated from below, the fluid 
near the bottom boundary expands, leading to reduced density and a net buoyancy force in the opposite direction 
of the gravity. When the temperature difference between the top and bottom boundaries exceeds a certain thresh-
old, the denser fluid near the top boundary penetrates downward, resulting in density-driven downward convec-
tion. This process is referred to as the Rayleigh-Bénard convection and was first studied by Rayleigh (1916) and 
Jeffreys (1926). If a porous medium saturated with a fluid is heated at the bottom boundary, similar instability 
can occur, which was first studied by Horton and Rogers (1945) and Lapwood (1948) and is referred to as the 
Rayleigh-Darcy or Horton-Rogers-Lapwood instability.

Fluid density variation can also be caused by solute transport. One example is geological carbon sequestration 
(GCS), which is permanent disposal of CO2 in geological formations and has been considered a promising solu-
tion to reduce continuous CO2 buildup in the atmosphere. Geological formations for CO2 injection include deep 
coal beds, depleted oil and gas reservoirs, deep-sea sediments, and deep saline aquifers (Bergman & Winter 1995; 
Bruant et al., 2002; Celia et al., 2015; Ennis-King et al., 2005; Ennis-King & Paterson, 2005; Guo et al., 2020; 
House et  al.,  2006; Kovscek & Wang,  2005). Saline aquifers are preferable for GCS because they have the 
highest storage capacity globally (Bruant et al., 2002). When CO2 is injected into deep saline aquifers with a 
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pressure higher than 73.8 bar and temperature higher than 31.0°C, it exists in the supercritical phase. Injected 
supercritical CO2 (scCO2) migrates upward due to the buoyancy until it is stopped by the low-permeability cap 
rock. Meanwhile, scCO2 dissolves in brine. Brine saturated with dissolved CO2 has a density increase around 
10 kg/m3 (Chen et al., 2013; Chen & Zhang, 2010; Ennis-King et al., 2005). Increased brine density near the 
scCO2-brine interface can cause miscible density-driven downward convection, which is favorable for improving 
the long-term security of CO2 storage. This CO2 trapping mechanism is referred to as convective mixing (Chen 
et al., 2013) or convective dissolution (Neufeld et al., 2010). Convective dissolution drives dissolved CO2 away 
from the scCO2-brine interface, which accelerates subsequent scCO2 dissolution and thus facilitates the overall 
mass transfer rate from scCO2 to brine. Our previous pore-scale study (Chen & Zhang, 2010) confirmed that CO2 
mass transfer by means of convective mixing is significantly faster than that driven by pure molecular diffusion. 
Sathaye et al. (2014) used geophysical and geochemical data to show that convective mixing in the Bravo Dome, a 
large natural CO2 field in New Mexico, led to a CO2 mass flux of 0.1 g/(m2 yr); this work provided field evidence 
of convective mixing. In contrast, the convective CO2 mass flux at the Sleipner Field in Norway was estimated as 
high as 20 kg/(m2 yr) due to its much higher formation permeability.

There are several critical system parameters that regulate the behaviors of miscible density-driven convection. The 
first is the Rayleigh-Darcy number (Ra), which is a dimensionless number that describes the ratio of gravitational 
instability to molecular diffusion. Density-driven instability can only occur when Ra exceeds a certain threshold 
value, which is referred to as the critical Ra number, Racr. When Ra is higher than Racr, the next question is how 
long it takes to trigger density-driven instability and convective dissolution. Due to the challenges associated with 
laboratory experiments, existing studies on Racr and the critical times for triggering density-driven instability and 
convective dissolution relied heavily on stability analysis (Bestehorn & Firoozabadi, 2012; Cheng et al., 2012; 
Emami-Meybodi, 2017; Ennis-King et al., 2005; Ennis-King & Paterson, 2005; Hassanzadeh et al., 2006; Java-
heri et al., 2010; Kim, 2013, 2014a, 2014b; Kim & Choi, 2012; Kim et al., 2008; Meulenbroek et al., 2013; Riaz 
et al., 2006; Slim & Ramakrishnan, 2010; Wessel-Berg, 2009; Xu et al., 2006) and direct numerical simulations 
(Azin et al., 2013; Chen et al., 2013; Elenius & Johannsen, 2012; Farajzadeh et al., 2007; Pau et al., 2010; Riaz 
et al., 2006; Slim, 2014; Wen et al., 2018).

Typical experimental methods for studying miscible density-driven convection include pressure-volume-temper-
ature (PVT) cells (Moghaddam et al., 2012; Mojtaba et al., 2014; Newell et al., 2018; Shi et al., 2018) and Hele-
Shaw cells (Kneafsey & Pruess, 2010; Neufeld et al., 2010; Taheri et al., 2017). PVT cells allow for assessment of 
CO2 dissolution fluxes by measuring the pressure decay. Liyanage et al. (2019) used X-ray computed tomography 
technologies to investigate density-driven convection in a methanol-ethylene-glycol (MEG)/water system. In situ 
measurements of dissolved solute concentration can be conducted by measuring the color intensity of the solution 
in pure water (Slim et al., 2013) or porous media (Sahu & Neufeld, 2020). However, no prior experiments were 
able to determine Racr and the relevant critical time scales due to the challenges in capturing flow dynamics at the 
initial stage of density-driven convection.

In this study, we developed a novel experimental setup, which allowed for both visual observations of densi-
ty-driven convection and quantitative measurements of spatial-temporal distributions of solute concentrations in 
porous media. Particularly, we used the intensity of reflected visible light to infer the in situ solute concentration 
in porous media, allowing the use of an adequately thick sand box, which featured the primary novelty of this 
work. This is the first study to determine Racr and the relevant critical time scales using laboratory experiments.

2. Theories and Mathematical Model
Migration of dissolved CO2 in a homogeneous and isotropic porous medium can be modeled using the following 
equations with the Boussinesq approximation which assumes that the CO2 concentration affects only the body 
force term (Chen et al., 2013):

𝜇𝜇
𝑘𝑘
𝐮𝐮 = −∇𝑝𝑝 + 𝜌𝜌𝜌𝜌𝐞𝐞𝑦𝑦 (1)

∇ ⋅ 𝐮𝐮 = 0 (2)

𝜙𝜙𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐮𝐮 ⋅ ∇𝜕𝜕 = 𝜙𝜙𝜙𝜙∇2𝜕𝜕 (3)
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𝜌𝜌 = 𝜌𝜌0(1 + 𝛽𝛽𝛽𝛽) (4)

where 𝐴𝐴 𝐴𝐴 is the fluid dynamic viscosity, 𝐴𝐴 𝐴𝐴 is the porous medium permeability, u is the Darcy velocity vector; p is the 
fluid pressure, 𝐴𝐴 𝐴𝐴 is the fluid density, g is the gravitational acceleration, ey is the unit vector in vertical direction, C is 
the dissolved CO2 concentration, 𝐴𝐴 𝐴𝐴 is the porous medium porosity, D is the effective diffusivity of dissolved CO2 in 
the porous medium, 𝐴𝐴 𝐴𝐴0 is the density of pure water, and 𝐴𝐴 𝐴𝐴 is the expansion coefficient and equal to 0.001 m3/kg, which 
indicates that a dissolved CO2 concentration of 1 kg/m3 will increase the solution density by 0.1% (i.e., 1 kg/m3).

The characteristic parameters are 𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝐻𝐻 , 𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝜙𝜙𝜙𝜙∕𝐻𝐻 , 𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝐴𝐴0 , 𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝜇𝜇𝜇𝜇𝜇𝜇∕𝑘𝑘 , and 𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝐻𝐻2∕𝐷𝐷 , where H is the 
depth of the porous medium in the sand box; 𝐴𝐴 𝐴𝐴0 is the saturated CO2 concentration in the solution. The dimension-
less variables are then defined as 𝐴𝐴 𝐴𝐴∗ = 𝐴𝐴∕𝐿𝐿𝑐𝑐 , 𝐴𝐴 𝐴𝐴∗ = 𝐴𝐴∕𝐿𝐿𝑐𝑐 , 𝐴𝐴 𝐮𝐮∗ = 𝐮𝐮∕𝑢𝑢𝑐𝑐 , 𝐴𝐴 𝐴𝐴∗ = 𝐴𝐴∕𝐴𝐴𝑐𝑐 , 𝐴𝐴 𝐴𝐴∗ = 𝐴𝐴∕𝐴𝐴𝑐𝑐 , and 𝐴𝐴 𝐴𝐴∗ = 𝐴𝐴∕𝐴𝐴𝑐𝑐 . After 
normalization, Equations 1–3 can be re-written in the dimensionless form:

𝐮𝐮∗ = −∇𝑝𝑝∗ +𝑅𝑅𝑅𝑅𝑅𝑅∗𝐞𝐞𝑦𝑦 (5)

∇ ⋅ 𝐮𝐮∗ = 0 (6)

𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕∗
+ 𝐮𝐮∗ ⋅ ∇𝜕𝜕∗ = ∇2𝜕𝜕∗ (7)

where Ra in Equation  5 is written as 𝐴𝐴 Ra = Δ𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌∕(𝜌𝜌0𝜙𝜙𝜙𝜙𝜙𝜙) , where 𝐴𝐴 Δ𝜌𝜌 is the density difference between 
CO2-saturated solution and pure water, calculated as 𝐴𝐴 Δ𝜌𝜌 = 𝜌𝜌0𝛽𝛽𝛽𝛽0 , and ν is the kinematic viscosity. The maximum 
solution density increase, 𝐴𝐴 Δ𝜌𝜌 , is 10 kg/m3 because the dissolved CO2 concentration in the saturation state, C0, 
is 10 kg/m3 (Chen et al., 2013). The higher the value of Ra, the more likely that density-driven instability and 
convective dissolution will be triggered.

3. Experimental Methods and Materials
The experiments were carried out in a 0.8 m × 0.8 m × 0.018 m quasi-two-dimensional (2D) sand box fabricat-
ed with transparent acrylic panels, which enabled visual observations of the transport processes in the porous 
medium. The sand in the box was initially saturated with pure water. MEG and pure water were mixed to mimic 
a solution saturated with dissolved CO2, which was then injected into the top fluid reservoir to trigger miscible 
density-driven convection. A porous mesh sheet was placed on the top of the sediment bed to prevent sand parti-
cle movement. Overlying the porous mesh sheet was an impermeable panel, which eliminated the impact of fluid 
flow when the MEG solution was injected into the top fluid reservoir. After the reservoir was filled with the MEG 
solution, the impermeable panel was removed to allow MEG to migrate into the sand box through molecular 
diffusion. Figure 1a illustrates the experimental setup.

The density of a MEG-water solution can be either higher or lower than pure water, depending on the MEG mass 
concentration in the solution (Liyanage et al., 2019; Neufeld et al., 2010). In this work, we used MEG having a 
60 wt% ethylene-glycol content. Figure 1b illustrates the measured MEG solution density as a function of MEG 
concentration. The MEG solution density increased approximately linearly with the MEG mass concentration, 
and it reached the maximum when the MEG concentration was 50%. In addition, at a MEG concentration of 
50%, the MEG solution density was higher than water by 11 kg/m3, which is approximately equal to the density 
increase in a CO2-saturated solution (Chen et al., 2013). This implies that the maximum increased gravitational 
acceleration due to the dissolved MEG, calculated as 𝐴𝐴 Δ𝜌𝜌𝜌𝜌∕𝜌𝜌0 , was around 0.1 m/s2, which is the same as that in 
a CO2-saturated solution. Therefore, we placed a MEG solution having a 50% mass concentration in the fluid 
reservoir as an analogue of CO2-saturated solution at the top boundary. The porous media in the sand box were 
constructed using pure silica sand. Table 1 illustrates the sand properties. In this study, Ra ranged from 481 to 
7,959, which was within the relevant range associated with field-scale saline aquifers (Liyanage et al., 2019).

The MEG solution in the top fluid reservoir was dyed with a blue tracer. A high-speed high-resolution digital 
camera and two panel light sources were placed at the front side of the sand box to take pictures. Most experi-
ments calibrated the relationship between solute concentration and transmitted light intensity, which requires that 
the thickness of the sand box (Sahu & Neufeld, 2020) or Hele-Shaw cell (Slim et al., 2013) be adequately small 
to allow for light penetration. This may cause wall effects on flow dynamics. Thus, we calibrated the relationship 
between the MEG mass concentration and intensities of the reflected red, green, and blue light, as shown in  
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Figure 1c, allowing the use of an adequately thick sand box. It was observed that the intensities of the reflected 
red and green light signals decreased with an increasing MEG mass concentration, because a higher MEG con-
centration absorbed more red and green light. We used the green light signal to infer the MEG mass concentration 
because of the linear relationship between them. Because the green light intensity on each individual pixel can 
be obtained, the MEG mass concentration at the same pixel can be calculated, which enabled us to obtain the 

MEG concentration distribution over the entire 2D domain. The distribution 
of the dimensionless concentration, C*, was obtained by normalizing the 
MEG concentration distribution with the initial MEG concentration in the 
fluid reservoir, as shown in Figure 1a. The signal intensity-MEG concentra-
tion correlation shown in Figure 1c was measured before each experiment to 
eliminate the influence of a possible background light change. The following 
linear correlation was found:

𝐶𝐶 = 𝑎𝑎𝑎𝑎𝐺𝐺 + 𝑏𝑏 (8)

where C is MEG mass concertation and IG is green-channel signal intensity. 
The values of a and b were fitted as −0.0179 ± 0.0014 and 1.7946 ± 0.0996, 
respectively.

Figure 1. (a) Schematic plot of the experimental setup. (b) Density of MEG-water solution as a function of MEG mass 
concentration. (c) Signal intensity of the red, green, and blue light as a function of MEG mass concentration. The scatter data 
points are experimental data fitted with the solid curves.

Sand mesh size
Average grain size 

(μm)
Permeability 
(×10−12 m2) Porosity Ra

#12–20 1,144 49.00 0.325 7,959

#16–30 768 29.90 0.345 4,723

#20–40 499 15.00 0.369 2,404

#40–70 285 5.37 0.357 944

#50–80 250 4.38 0.416 481

Table 1 
Properties of Sand Used in the Experiments
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4. Results and Discussion
4.1. Overview of Density-Driven Instability and Convective Dissolution

Figure 2 illustrates the transition from a diffusion-dominated process to a convection-dominated process in the 
experiments, which can be classified into three stages, including the diffusive regime, velocity-growth regime, 
and flux-growth regime. In the diffusive regime, MEG mass transfer was controlled primarily by molecular dif-
fusion. With the accumulation of instability at the top interface, the onset of density-driven instability led to local 
convective mass transfer at the penetration front. The critical time for the onset of density-driven instability, tcr1, 
was defined as the time when the peak downward velocity grew to a level that was one order of magnitude higher 
than the diffusion-regulated characteristic velocity; this critical time marked the end of the diffusive regime and 
the beginning of the velocity-growth regime.

In the velocity-growth regime the overall MEG mass transfer from the top fluid reservoir to the underlying porous 
medium was still dominated primarily by molecular diffusion. Therefore, the overall MEG mass flux continuous-
ly decayed at early times because mass transferred into the underlying porous medium diminished the concen-
tration gradient across the interface, which hampered diffusive mass transfer. At a later time, MEG-rich fingers 
were adequately developed, and consequently the mass flux contributed by convection started to dominate over 
the mass flux contributed by pure molecular diffusion. At this point, the total MEG mass flux started to increase. 
The time when the total MEG mass flux started to increase was the critical time for the onset of convective dis-
solution, tcr2, which marked the end of the velocity-growth regime and the beginning of the flux-growth regime.

4.2. Mass Transfer Rate

Using the signal intensity-MEG concentration relationship, the MEG concentration distribution over the entire 
2D porous medium was determined, based on which the total MEG mass transferred across the top interface 
can be calculated by integrating the MEG concentration within the 2D domain. The MEG mass flux (kg/m2/s), 
defined as MEG mass transferred across a unit interfacial area per unit time, was calculated as the total MEG 
mass increment in the porous medium over two consecutive measurement times normalized by the total interfa-
cial area and the time increment.

Figure 2. Development of density-driven instability and convective dissolution for Ra = 481 (a–e) and Ra = 4,723 (f–j). Blue fingers indicate density-driven downward 
penetration of MEG-rich solution.
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Figures 3a–3e demonstrate the MEG mass flux as a function of dimensionless time under various Ra numbers. 
The dimensionless time is defined as t* = t/tc, where t is the experimental time (s) and tc is the characteristic time 
(s). The MEG mass flux decreased first and then increased. This was due to a competing process between dif-
fusive mass transfer and convective mass transfer. In the early stages (i.e., diffusive regime and velocity-growth 
regime), MEG mass transfer from the top fluid reservoir to the underlying porous medium was dominated primar-
ily by molecular diffusion. Although the onset of density-driven instability led to local convective mass transfer 
at the penetration front, the overall mass flux across the interface was still dominated primarily by molecular 
diffusion. The MEG mass transported into the porous medium reduced the concentration gradient across the top 
interface, which hampered the mass flux contributed by pure molecular diffusion. This explained the continuous 
decay of MEG mass flux in the early stages. At a later time, MEG-rich fingers were adequately developed, and 
consequently the mass flux contributed by convection started to dominate over the mass flux contributed by mo-
lecular diffusion. At this point, the total MEG mass flux started to increase even the mass flux contributed by pure 
molecular diffusion was continuously diminished. The time when the total MEG mass flux started to increase 
was the critical time for the onset of convective dissolution (i.e., onset of the flux-growth regime).

The ratio of convective mass flux to diffusive mass flux was described using the Sherwood number (Sh), a di-
mensionless number defined as 𝐴𝐴 Sh = 𝐹𝐹𝑐𝑐∕(𝜙𝜙Δ𝐶𝐶𝐶𝐶∕𝐻𝐻) , where the value of MEG mass flux, Fc, was calculated 
as the average over the entire temporal domain, and ΔC was the difference between the MEG concentration in 

Figure 3. MEG mass flux across the top boundary as a function of dimensionless time for (a) Ra = 481, (b) Ra = 944, (c) 
Ra = 2,404, (d) Ra = 4,723, and (e) Ra = 7,959. The green dash line indicates the dimensionless onset time for density-driven 
instability, t*cr1. The blue dash line indicates the dimensionless onset time for convective dissolution, t*cr2. The two onset 
times divide the transition stage into three regimes, which are the diffusive regime (R1), velocity-growth regime (R2), and 
flux-growth regime (R3). (f) Power-law relationship between Sh and Ra.



Geophysical Research Letters

GUO ET AL.

10.1029/2021GL095619

7 of 10

the top fluid reservoir (i.e., C0) and MEG concentration in pure water (i.e., zero). Figure 3f illustrates that the 
experimental measurements showed a power-law correlation between Sh and Ra, written as Sh ∝ Ra0.95, which 
was consistent with previous experimental studies (Liyanage et al., 2019; Neufeld et al., 2010).

4.3. Peak Downward Velocity

Previous numerical studies (Chen et  al.,  2013; Chen & Zhang,  2010) on miscible density-driven convection 
showed that the peak downward velocity occurs at the penetration front. Therefore, we used digital image tracking 
methods (Fu & Liu, 2016) to find the downward velocities on the MEG-rich penetration front, and the maximum 
downward velocity on the penetration front was the peak downward velocity. Figure 4a illustrates the dimension-
less peak downward velocity as a function of dimensionless time. The dimensionless peak downward velocity is 
defined as 𝐴𝐴 𝐴𝐴∗max = 𝐴𝐴max∕𝐴𝐴𝑐𝑐 , where 𝐴𝐴 𝐴𝐴max is the peak downward velocity and uc is the characteristic velocity.

Figure 4a demonstrated that under a higher Ra number the peak downward velocity reached its maximum value 
earlier. The non-monotonic evolution of the peak downward velocity was caused by a competing process between 
the convection of dissolved MEG and transverse dispersion. During downward penetration, transverse dispersion 
decreased the concentration gradient across the finger front and thus reduced the density difference, which ham-
pered the downward convection and thus reduced the peak downward velocity. After the peak downward velocity 
reached its maximum value, it gradually decreased to a relatively low level. In some cases, especially under a high 
Ra, the later-time peak downward velocity can approach zero.

4.4. Critical Ra

Our previous numerical study found that Racr = 250 in a homogeneous and isotropic aquifer (Chen et al., 2013). 
However, due to the challenges in measuring in situ solute concentration and flow velocities in the laboratory, 
there were no existing experimental studies in determining the Racr in the laboratory. Based on our study (Chen 
et al., 2013), when density-driven instability is triggered, the peak downward velocity grows exponentially with 
time. Therefore, exponential functions were used to fit the peak downward velocities in the increasing stage (i.e., 
at early times). Figure 4b demonstrates the natural logarithm of the dimensionless peak downward velocity as 
a function of the dimensionless time. The linear correlations confirm that 𝐴𝐴 𝐴𝐴∗max ∝ exp(𝑔𝑔𝑟𝑟𝑡𝑡∗) in the early stage of 
instability development. Therefore, the slopes of the linear relationships in Figure 4b are the growth rates of the 

Figure 4. (a) Normalized peak downward velocity as a function of dimensionless time. (b) Fitting natural logarithm of dimensionless peak downward velocity at early 
times. (c) Growth rate of peak downward velocity as a function of Ra. The intersection of the extrapolation line with the x axis corresponds to Ra = 259, which is the 
Racr. Critical times for the onset of (d) density-driven instability. (e) Convective dissolution as a function of (μφ)2D/(gΔρk)2.
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peak downward velocities. Figure 4c illustrates the velocity growth rate as a function of Ra. The growth rate de-
creased approximately linearly with the decrease of Ra. When the growth rate approached zero, the correspond-
ing Ra was considered as the Racr, which was found as 259 in this experiment.

4.5. Correlations for Critical Times

In this study, the critical time for triggering density-driven instability, tcr1, was determined using the following 
equation:

𝑢𝑢max = 𝑢𝑢𝑐𝑐 exp(𝑔𝑔𝑟𝑟𝑡𝑡) (9)

where the value of the velocity growth rate, gr, was known based on the measurements shown in Figure 4b. The 
value of tcr1 was the t value that gave 𝐴𝐴 𝐴𝐴max = 10𝐴𝐴𝑐𝑐 , which was the time when the peak downward velocity grew 
to a level one order of magnitude higher than the diffusion-regulated characteristic velocity. It should be noted 
that tcr1 is usually too short to directly determine in laboratory experiments (Mahmoodpour et al., 2019; Mojtaba 
et al., 2014; Newell et al., 2018; Shi et al., 2018). Therefore, we determined tcr1 using Equation 9, which was based 
on the extrapolation in the temporal domain.

The determined tcr1 values and the corresponding sand permeability values, k, were used to fit the following em-
pirical correlation based on the formulation found in our previous study (Chen et al., 2013):

𝑡𝑡𝑐𝑐𝑐𝑐1 = 𝐶𝐶1
(𝜇𝜇𝜇𝜇)2𝐷𝐷
(𝑔𝑔Δ𝜌𝜌𝜌𝜌)2

 (10)

where C1 is a constant. Figure  4d illustrates that the data fitting of the laboratory experimental data found 
C1 = 53.1. Xu et al. (2006) found C1 = 75.2 using linear stability analysis with periodic-wave perturbations. Slim 
and Ramakrishnan (2010) found C1 = 47.9 using linear stability analysis with infinitesimal perturbations. Chen 
et al. (2013) found C1 = 61.1 using direct numerical simulations.

The tcr2 values determined from the mass flux plots (i.e., Figure 3) and the corresponding sand permeability val-
ues, k, were used to fit the following empirical correlation:

𝑡𝑡𝑐𝑐𝑐𝑐2 = 𝐶𝐶2
(𝜇𝜇𝜇𝜇)2𝐷𝐷
(𝑔𝑔Δ𝜌𝜌𝜌𝜌)2

 (11)

where C2 is a constant. Figure 4e illustrates that the data fitting found C2 = 832.1. Emami-Meybodi et al. (2015) 
reviewed previous numerical studies and showed that the value of C2 ranged from 500 to 5,619, depending on 
different initial perturbations. Our study is the first to experimentally determine C2 in the laboratory. The value of 
C2 is more than one order of magnitude larger than C1, which suggests that the critical time for triggering convec-
tive dissolution is longer than that for triggering density-driven instability by more than one order of magnitude.

5. Conclusion and Implications
We experimentally investigated density-driven instability and convective dissolution in a 2D sand box. We found 
a linear relationship between MEG mass concentration and reflected green light intensity, which enabled in 
situ measurements of solute concentrations in the spatial and temporal domains and consequently the mass flux 
across the top boundary. The Racr and critical time scales for the onset of density-driven instability and convective 
dissolution were determined. This is the first study to determine these critical system parameters using novel lab-
oratory experiments, which provides datasets for evaluating initial perturbations in numerical models. In practice, 
the determination of tcr2 has important applications in field-scale GCS because it marks a crucial moment when 
the overall dissolved CO2 mass flux starts to accelerate due to density-driven convection. This study also has ap-
plications in geothermal convection, heat transfer due to subsurface nuclear waste disposal, and variable-density 
groundwater flow. Future laboratory studies are needed to investigate the role of permeability heterogeneity on 
density-driven instability and convective dissolution.
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Data Availability Statement
Data are available through: https://doi.org/10.5281/zenodo.5196676.
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